If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+35t-35=0
a = 5; b = 35; c = -35;
Δ = b2-4ac
Δ = 352-4·5·(-35)
Δ = 1925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1925}=\sqrt{25*77}=\sqrt{25}*\sqrt{77}=5\sqrt{77}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{77}}{2*5}=\frac{-35-5\sqrt{77}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{77}}{2*5}=\frac{-35+5\sqrt{77}}{10} $
| 3a+2=-a | | 3a+2=a | | 1÷(6+5j)+1÷(7+4j)=20 | | 5^2x-1=150 | | w²+9w+81=0 | | 2(y+y+3)=12 | | -x²+50x-400=0 | | 25x^2-166x+256=0 | | -23+5x=-13-x | | 50x=600+x² | | 2(p-3)+8=10,p= | | 2.72^(x+2)=24 | | −2x−19=6x+29. | | -x²=600-50x | | 5*2.72^(x+2)=120 | | -4+7X=9x-8 | | 8x=-150 | | 2,5x-x+3,8x+0,7x=0,54 | | -x²+50x-400=200 | | 4x^2+24x+26=0 | | 9x+27=3x-27 | | 31/4+1/2y+11/3+5/6y=511/12 | | x^2+4x+5=(x+2)(x+7) | | 16k^2-108k+64=0 | | 3m+4m=35 | | 50-2(x+7)^2=0 | | 11x+3-2x=21 | | 50-2x=40-x | | 16x-34=11x+26 | | 4(5x–6)–7=4–5(6x–7) | | 8m-24=33 | | 3x+5x=12+2x |